If it's not what You are looking for type in the equation solver your own equation and let us solve it.
15x^2-36x=0
a = 15; b = -36; c = 0;
Δ = b2-4ac
Δ = -362-4·15·0
Δ = 1296
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1296}=36$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-36)-36}{2*15}=\frac{0}{30} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-36)+36}{2*15}=\frac{72}{30} =2+2/5 $
| 5(m-2)+8m=94 | | 13×-2l=1/2 | | 3d+4–9d+12=(–5d) | | 4=2(−x−3) | | -8 x + (-18) = 54 | | (10x+5)45= | | 30c-12-10c=13 | | 3d+4–9d+12=–5d | | -3+2p=17 | | 54=39-y | | 7=9x+8 | | 32x^2-48x+16=0 | | (5x+4)(x+2)=180 | | n–12=23 | | y/8-17=13 | | y+3(2-y)=8* | | 2+8k+5=23 | | 6(m-6)=9(m-9) | | -3/2y+5=2 | | −3(2r−8)=6 | | -4+2b=-2 | | -14.3=-1.4+-3y | | 5(4+x)=7x-2* | | -14.3=-1.4-3y | | 18=−3(x+2) | | -x+10=-2(x-2) | | 7(3w+3)/4=-9 | | (x-0.3)(2x-0.5)=0 | | 13=w/2 | | 17+4x=-4 | | 30=-3(x–1) | | 21x+9+20x-5+10x-5=360 |